DEVELOPMENT OF DYNAMIC FORMS OF STABILITY
LOSS OF ELASTIC SYSTEMS UNDER INTENSIVE
LOADING OVER A FINITE TIME INTERVAL

V. M. Kornev_ ‘ UDC 624.074.4

Under the action of high intensity loads on elastic systems the largest deflectional growth rate is
possessed by a characteristic form which differs from the first characteristic form [1]. For loads which
exceed the Euler load the deflections of elastic systems tend towards infinity in the course of time [1, 2].

It is therefore natural to consider such problems over a finite time interval. We show below that in approx-
imating an initial system with an infinite number of degrees of freedom over a finite time interval by a sys-
tem with a finite number of degrees of freedom it is necessary to account for the density of the characteris-
tic motions and information concerning external effects. We exhibit a formal process for identifying the
fundamental motions in a problem involving the buckling of a rod. For the study of the motion over a suf-
ficiently long time interval we can always replace a rod, acted on by a constant load of arbitrary intensity,
by a system with a single degree of freedom if all the Fourier coefficients in the Fourier series for the
perturbations are nonzero. »

We give examples in which the density of the characteristic motions of elastic systems is sufficiently
large, the density depending essentially on the thinness of the walls of a shell. We show that in a three-
layered or multilayered assembly the calculation of transverse shear influences the density of the charac-~
teristic motions, this being in addition to the influence of the thinness of the walls of the structure. In all
probability, both of these phenomena will be subject to further study.

We give recommendations for determining the critical time and the critical load intensity for systems
with many degrees of freedom.

1. We consider the process of buckling of an elastic homogeneous rod under a constant intensity load

EIw s+ Nw o+ pFw = f(z) (0<<z <L, t2>0) X.1)

Here w is the normal deflection; x and t are the longitudinal coordinate and the time; L is the length
of the rod; p is the density of the rod material; F = const and I = const are the rod cross section and the
rod bending rigidity; E is Young's modulus; N is a given constant longitudinal force; f(x) is a function de-
fining given perturbations or imperfections, assumed to be small [see Eqs. (1.11)].

We assume, up to the instant of loading, that the hinge-supported rod is at rest. Then the initial and
boundary conditions have the form

w=w,=0(=0, w=ws;,=0 (=0, L) (1.2)

We seek a solution of Eqs. (1.1) and (1.2) in the form

o= 3 gulhsnZ 0.9)
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After making appropriate transformations, we obtain equations for the g, (t) with zero initial condi-

tions
qm” — 02, = fms Gm (O) = Gm’ (0) =0 (m =1,2 ) 1.4)
L
5 BT 5 N El 2 .
Um™ = :FL«Q m2(n2__ mz)’ le - W: ’ Ne = an ’ fm == P_LS f(‘l)s”l )_ﬂJ'II‘_Jde
0

Here > 1 is a parameter characterizing the load intensity and Ng is the Euler load.

Indices m < 5 correspond to motions describing a loss of stability
m = (Frf0n?) (h ant —1)  (m< 1) a.5)

For sufficiently large values of t the expressions (1.5) for q,, simplify:
dm = (fm/dez) exp ap, 3 (m < T]) (1 ’6)

Following [1], we single out from among the motions with indices m <7 that motion for which the co~
efficient in the exponent attains its largest value o* = a(ms) (here m, is the integer closest to n/2V2; the
case in which o* = a(m,) = a(m, +1) is possible). It is obvious that as t —c we can replace a system with
an infinite number of degrees of freedom by one of number m, if f{m4)= 0. We now point out a rule for
choosing the degrees of freedom when the stability loss process is studied over a finite tlme interval 0 =
f = t3. Consider the expressions

G (Le) i cha tp—1
* m — m m .
In”™ = g aFty—1 7 o * cha¥f —1 a7
(/m* = (fm / Lxmz) exp (am - CL*) to (1 -8)

Assume that we can divide the factors in the expressions (1.7) and (1.8) for q,.* into classes ata
specific time instant ¢;:

cha th—1 . . . : -
ch—afzo:T =0MmY, m=m(l), i=01,2,.., 1 a.9)
expldy, —a¥)t, =0, m=m{), i=0,1,2,..., & (1.10)
fm:/am:?-,z 0(""“’)7 m = m<l)’ l = 17 27“-1 oc (1'11)

The first two relations depend on the time instant {; and on the density of the characteristic motions
in the stability problem for a compressed rod,while the last relation is independent of the time [if some of
the Fourier coefficients are zero, then for them [ = = in Egs. (1.11)]. When ty — «, in the first class i = 0
in Eq. (1.9) or {1.10) there is either one motion, for which m = m«, or two motions, for which m = my,
my + 1. Using Egs. (1.9) and (1.11) or Eqs. (1.10) and (1.11), it is eagy to identify the fundamental motions
among the g, *. Actually, for qp,* @ comparison with respect to order holds at a fixed time instant:

Tn* (L) =0, m=m(), Ji=1ln I+ 1,. t.12)

Here j is an integral parameter. From the relations (1.12) we may determine the number of funda-
mental motions m = m(jy) (min j = j). Among the fundamental motions the defining motion with index m
is necessarily present for sufficiently large values of t; if Sm«= 0

Using the estimates (1.12), we drop all the secondary terms of the series (1.3), whereupon its prip-
cipal part has the form

w(z, ) = Dgm O sin =2, m=m(jy) (1.13)
For moderate times t; and external effects with a single order of smallness, the function w{x, t,) may

be of a pulsating character with respect to the longitudinal coordinate.
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p We show that the separation into classes in Egs. (1.9) and (1.10),

and, correspondingly, also in Eqs. (1.12), depends on the rigidity char-

/ acteristics of the rod; for example, for a three-layered rod with a sup-

porting layer of small deflectional rigidity, the density of the charac-

H teristic motions for certain values of the load intensity increases sub-

0s stantially in comparison with the density of the characteristic motions
§ v for a homogeneous rod. For intensive loading of three-layered struc-

7 tures with a sufficiently pliable filler, higher forms of stability loss
5 manifest themselves more readily than in homogeneous structures (see
{21, pp. 806-809, and also (3, 4].

1 g m The function ¢ (m, t, n) = exp (ay,~ a*) is a distinct interior
boundary layer [5] if we take the parameter m as the independent vari-
able and fix ) and . In Fig.1 we show typical curves characterizing
the distribution of amplitudes of stability loss forms relative to the determining motion at a fixed time in-
stant when fp,/a,“ = const = 0 for m<y. Curve 1 is drawn for t = {), curve 2 for t = 2t;, curve 3 for t = 10t;
(n* = 50), curve 4 for t = ty, curve 5 for t = 2t;, and curve 6 for t =10ty (5’ = 128). Under more intense load-
ing, the boundary layer described by the function ¢(m, t, n} may be expressed more clearly. As t— the
function ¢ (m, ty, ) has the form @{m, =, ) =1 for m = my, ¢(m, =, n) =0 for m= m,, i.e., as if it were
completely "cut out" of a single motion (1, 5], if 7\ = 0.

Fig. 1

In solving specific problems a separation into classes, similar to that in Eq. (1.9) or Egs. (1.10) and
(1.11), cannot always be made, since the boundaries of the classes may be "smeared out," but even in such
cases identifying the fundamental motions presents no difficulties if use is made of a comparison with re-
spect to order (asymptotic analysis). »

Thus a rod under constant intensive loading may always be replaced by a system with a single degree
of freedom of index m = m, [see Eq. (1.13)] if the time interval is sufficiently large (0 <t =< ), and if the
Fourier series coefficient of index my is nonzero, i.e., if f , = 0. In exceptional cases the rod may be
replaced by a system with two degrees of freedom, with indices m = my and my + 1, if ¢ is large and

S+ 0 fmx g ® 0

The problem considered above, relating to the buckling process in a rod, is probably the simplest
problem of its kind. We give below two examples which show that among the problems relating to the inten-
sive loading of thin-walléd elastic structures much more complicated situations may arise; in these exam-
ples the density of the characteristic motions depends essentially on the thin-walled property of the struc-
ture; moreover, in the second of these examples, the density of the characteristic motions is connected
with the nonuniqueness of representation of the solution.

2. We now consider the development of axially symmetric forms of stability loss of thin-walled cylin-
drical shells under a constant intensive loading [2, 6]

B, ypnn T W+ MY g+ W = (2) 0<Lz<<LIR, t>0) 2.1)

Here w is the normal deflection of the shell of length L and radius R; h is the shell thickness; x and
t are, respectively, the longitudinal coordinate and the time; ¢2 = h?/12 (1—»% R? is a parameter which
characterizes the thin-walled property of the structure; v is Poisson's ratio; A is a loading intensity param-
eter; and f(x) is a function proportional to the given perturbations or imperfections of the shell (the scale
of the independent variable t is chosen so that the coefficient of w t becomes unity).

Up to the instant of application of the intensive load, let the hinge-supported shell be at rest [see Egs.
(1.2), where x = 0, L/RI. If a solution of the problem (2.1), (1.2) is sought in the form of a series [see Eq.
(1.3), where the independent variable is replaced by Rxl, then for the q,, we obtain Egs. (1.4), where the
coefficients are of the form

L/R
U2 == Ay ® — g¥myt — 1, my = -11271—2— v fu= 2 g f(x) sin nRz dz (2.2)

Next we study the motions describing loss of stability, the amplitudes of these motions being given by
Eqs. {1.5) and (1.6) for my < m < my; the indices m < my, m > my, correspond to oscillations; the time
functions qmo(t) and Umgq (t) may be second degree polynomials. The coefficient «,, has a maximum for
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Ty = (gt | L) = A/ 26%, maxo,? = A?/de? — 1 2.3)
We study the density of the characteristic motions. This problem is analogous to the problem con-
cerning the number of characteristic values which fall in a given interval of variation of the characteristic
values {7], the only difference being that in our problem it is necessary to count the number of characteris-
tic motions (number of forms of stability) which fall in a given interval of variation of « __ [see Eqgs. (1.7)

m
and (1.9)]. From the expression for oz%n we have {see Eqs. (2.2)]

my = {M2e® &= [A2 — 4e? (1 4 o )]"/2%) (2.4)

We establish the presence or absence of points (regions) of condensation for the function my = m1(oz§n)
by examining the derivative 9my/ aain

Imyloan? ~ [A2 — 4e? (1 - a B {2.5)

We have omitted factors on the right side of the relation (2.5) which contain no singularities. From
relation (2.5) it follows that amy/5a’, — = for AZ—~4e® (1 + o ); in particular, when 3% = 4e? (1 + o), the
coefficient in the exponent attains a maximum value [see Eqgs. (2.3)]. Thus in a neighborhood of m = m, we
can find a region of condensation of characteristic motions. This region of condensation of characteristic
motions influences the selection of the degrees of freedom when the stability loss process is studied over a
finite time interval 0 <t < t;. Actually, the separation into the classes (1.9) and (1.10) depends on the den-
sity of the characteristic motions, the latter being determined by the thin-walled property of the structure.
The function ¢(m, &, 7, €) = exp (ay,— a*) t; is a distinctive interior boundary layer [5] (m is the indepen-
dent variable; t;, n, and ¢ are fixed).

The expression

w(z, 1) = S\gm(®)sin 2z, m = m (o, €) (2.6)

is the principal part of the series (1.3), wherein the number of terms in the sum (2.6) depends on the thin-
walled property of the structure. In solving specific problems for a given thin-walled shell, the calculation
of the density of the characteristic motions in a given problem presents no difficulties.

3. We consider the behavior of a spherical panel loaded by an intensive, external, uniformly dis-
tributed pressure. Let the fastening of the rectangular spherical panel admit a momentless state of stress
and, at the instant of application of the large intensity load, let the panel be pressed without inertia. Then
the equation describing the development of the normal deflections has the form [2, 6]

EMAw + w -+ Mw 4wy = fz, y) O<z<a/R, 0<y< bR, t>0) (3.1)

Here x and y are spatial coordinates, R is the radius of the spherical shell, and the remaining nota-

tion is the same as that used in Sec. 1 (Aw = w xx + w,yy)a .

We assume that prior to loading the hinge-supported shell is in a state of rest:
w=w, =0, t=0), =W, =0
(x =0, a/B), w=w,;, =0 (y=0, b/R) (3.2)
We seek a solution of the Egs. (3.1) and (3.2) in the form
w(z, y, ) = q () Wz, y) (3.3)
where the function W(x, y) satisfies the equation (see {6], Chap. 10, § 15 and also [2], § 212)
AW = —p2W (3.4)

We obtain an equation for q(t), identical in form with Egs. (2.4), which have already been studied.
For fixed y the Eq. (3.4) has the nonunique solution

<——-'mR )2 + (LnR >2 =u? (W (z, y) = sin 2182 Gin ——mr;Ry) 3.5)

a b a
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either forintegersnand m or for n and m differing little from integral values. In the first case the coeffi-
cients in the exponents of the corresponding motions coincide, while in the second case they differ little
from each other. Thus. the density of the characteristic motions in the spherical panel buckling problem
depends on the thin-walled property of the structure and is connected with the nonuniqueness of the solution
of Eq. (3.5).

For intensive loading of shells [2] the higher stability loss forms have the greatest amplitude growth
rate; this was stated formally in [4]; however, it was not proved that, in all, a single form corresponds to
the exponent with the maximum index. The example we have given shows that nonuniqueness may exist.
Consequently, we cannot always succeed in approximating the initial system by one with a single degree of
freedom. It is therefore desirable to conduct a supplementary study of the density of the characteristic
motions in problems involving intense loading of arbitrary homogeneous and layered shells. Analogous
problems concerning the density of the characteristic values in problems of dynamics [8] and sfability [9]
of homogeneous shells were studied earlier. Under intensive dynamic loading of shells the corresponding
equations also include inertia terms and terms connected with stability.

Thus the principal part of the solution of the problem (3.1}, (3.2), if an analysis similar to that of
Sec. 1 is carried out, may be represented in the form
W= o () sin ZZEE sin PTRY -y — in (o, €), 1= (joy ) 3.6)

n,m

where the number of degrees of freedom is sufficiently large. In studying the behavior of layered struc-
tures with transverse shear taken into account, this number of degrees of freedom increases sharply.

4. In the work above we have identified the fundamental degrees of freedom in systems with dis-
tributed parameters [see Eqgs. (1.13), (2.6), and (3.6)]. If for a rod the number of degrees of freedom is
either small or equal to one, for shells it is fairly large. In the experiments on spherical shells reported
in [10, 11], "it was established that the number of bulges in the shells increased with an increase in rate of
loading, i.e., much higher forms of stability loss were discovered" ({10], p. 132) and "at much higher rates
of loading there was observed a tendency towards the formation of several series of waves, positioned in a
checkered fashion concentrically relative to a pole" ({111, p. 39). However, in these experiments a suffi-
ciently stable picture of the bulge formation was not cbserved. Some "instability," along with a greater
sensitivity to the experimental conditions, is connected with the fact that the set of stability loss forms have
a tendency towards rapid growth. Normal deflection "pulsations” are possible: "a loss of stability always
preceded a considerable or rapidly decaying oscillation of the whole shell or some portion ofit (a'splash'),"
usually "a bulge appeared initially at the contour; with repeated loading this bulge developed further and a
second bulge appeared" ([10}, pp. 126, 127).

We use the relations (1.13), (2.6), and (3.6) to obtain estimates of the critical buckling time t, and the
critical loading intensity n,. We first note the features of the aforementioned relationships: each term of
the series consists of factors, in the first of which, for t values sufficiently large, the main contribution
comes from the exponent,while the second factor does not exceed one in absolute value. Therefore if we
assume that the initial perturbations, corresponding to the various forms of the normal motions, are of a
single order of smallness [1] [i.e., the relations (1.11) fall into a single class], the following estimate holds
for the normal deflection of a shell or a rod:

max | w |~ KCexp a*t (¢* = max @) ‘ @.1)

Here K is the number of degrees of freedom, and C is a constant depending on the conditions of the
problem. The estimate (4.1) holds only for sufficiently large values of t since it contains no terms with
exp (— ¢*t) and no terms depending either on x or on t.

The critical buckling time t, and the critical loading intensity ny may be obtained from the relation-
ships

max | w (1, ty) | = Wy, max|w (N, )| = wy 4.2)

if we choose the maximum deflection as the determining quantity.
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In Egs. (4.2) we substitute the estimate (4.1) for the deflection w; we have

af(nit~hw, —InC—nK {4.3)

whence the procedure for obtaining the critical parameters t, and n, becomes obvious. Equation (4.3) is
fairly stable with respect to possible errors (perturbations) in the determination of the constants w,, C,
and K. The term (-n K}, as a rule, has significance in problems involving the buckiing of well-defined
thin-walled shells, since situations are possible for which K > 1 [see the examples given in Sec. 2 and 3;
in rod-buckling problems this term can, as a rule, be neglected since K = O(1)].

10.
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