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Under the action of high intensity loads on elast ic  sys tems the l a rges t  deflectional growth rate is 
possessed  by a charac te r i s t i c  form which differs f rom the f i rs t  charac te r i s t i c  form [1]. For loads which 
exceed the Euler  load the deflections of elast ic  sys tems  tend towards infinity in the course of time [1, 2]. 
It is therefore natural to consider  such problems over  a finite time interval~ We show below that in approx- 
imating an initial sys tem With an infinite number of degrees of f reedom over  a finite time interval  by a sys-  
tem with a finite number of degrees  of f reedom it is necessa ry  to account for the density of the cha rac te r i s -  
tic motions and information concerning external  effects.  We exhibit a formal  process  for identifying the 
fundamental motions in a problem involving the buckling of a rod. For  the study of the motion over  a suf- 
ficiently long t ime interval we can always replace a rod, acted on by a constant load of a rb i t r a ry  intensity, 
by a sys tem with a single degree of f reedom if all the Four ier  coefficients in the Four ier  s e r i e s  for the 
perturbations a re  nonzero.  

We give examples in which the density of the charac te r i s t i c  motions of elast ic  sys tems is sufficiently 
large,  the density depending essent ial ly  on lt~e thinness of the walls of a shell. We show that in a three-  
layered or  mult i layered assembly  the calculation of t r ansverse  shear  influences the density of the charac-  
ter is t ic  motions, this being in addition to the influence of the thinness of the walls of the s t ruc ture .  In all 
probability,  both of these phenomena will be subject to fur ther  study. 

We give recommendat ions for determining the cr i t ical  time and the cr i t ical  load intensity for sys tems  
with many degrees  of freedom. 

1. We consider  the process  of buckling of an elast ic  homogeneous rod under a constant intensity load 

EIw .. . . .  ~- Nwxx~+ pFw,, = ] (x) (0 ~ x ~ L, t >~ 0) (1.1) 

Here w is the normal  deflection; x and t a re  the longitudinal coordinate and the time; L is the length 
of the rod; p is the density of the rod material ;  F = coast  and I -- const are the rod c ross  section and the 
rod bending rigidity; E is Young's modulus; N is a given constant longitudinal force; f(x) is a function de- 
fining given perturbations or  imperfect ions,  assumed to be small  [see Eqs.  (1.11)]. 

We assume,  up to the instant of loading, that the hinge--supported rod is at res t .  Then the initial and 
boundary conditions have the form 

w = w , t  = 0  ( t=0) ,  w = w , ~ = 0  

We seek a solution of Eqs. (1.1) and (1.2) in hhe form 

(x = 0, L) (1.2) 

r  

z~z (1.3) w -~ q~ (t) sin --'E- 
f t l ~ l  

Novosibirsk.  Translated f rom Zhurnal Prikladnoi Mekhantki i Tekhnicheskoi Fiziki, No. 4, pp. 122- 
128, July-August, 1972. Original ar t ic le  submitted November 19, 1971. 

�9 1974 Consultants Bureau, a division of Plenum Publishing Corporation, 227 g'est 17thStreet, New York, N. Y. 10011. 
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. ~'~ 
copy of this article is available from the publisher for $J5.00. 

536 



A f t e r  m a k i n g  a p p r o p r i a t e  t r a n s f o r m a t i o n s ,  we ob ta in  equa t ions  f o r  the qm(t)  with z e r o  i n i t i a l  cond i -  
t ions  

q j - a ~ q ~ = / ~ ,  q ~ ( 0 ) = q j ( 0 ) = 0  ( m = t ,  2 .... ) 
L 

+ g 4 E t  2"  2 rn2) ' rl. z = N , n " E l  2 f /(x) sin m r t z  
am"  = r T f - ~  rn ( ~1 - -  -~ .  N e = ~ . f ro=  p~+,  - - f f "  d x  

o 

(1.4) 

H e r e  V >> 1 is  a p a r a m e t e r  c h a r a c t e r i z i n g  the load  i n t e n s i t y  and  N e i s  the E u l e r  load .  

I n d i c e s  m < r7 c o r r e s p o n d  to mo t ions  d e s c r i b i n g  a l o s s  of  s t a b i l i t y  

q,~ = ( [ ~ j a ~  ~) (oh a . ~ t  - -  t) (m < ~l) 

F o r  s u f f i c i e n t l y  l a r g e  v a l u e s  of  t the e x p r e s s i o n s  (1.5) fo r  q m  s i m p l i f y :  

( 1 . 5 )  

q.~ = (/m/2:z,~ 2) exp a~ t (m < ~1) ( 1 . 6 )  

F o l l o w i n g  [1], we s ing l e  out  f r o m  a m o n g  the mo t ions  with i n d i c e s  m < V tha t  mo t ion  fo r  which  the co-  
e f f i c i e n t  in the e x p o n e n t  a t t a i n s  i t s  l a r g e s t  va lue  c~* = c~(m,) (here  m ,  i s  the i n t e g e r  c l o s e s t  to 7/21/2; the 
c a s e  in which  ~* = o~(m.) = ~ ( m .  + 1) i s  p o s s i b l e ) .  I t  i s  obvious  tha t  a s  t ~oo  we can  r e p l a c e  a s y s t e m  wi th  
an  in f in i t e  n u m b e r  of d e g r e e s  of  f r e e d o m  by one of  n u m b e r  m ,  i f f ( m , )  # 0. We now poin t  out  a ru l e  fo r  
c h o o s i n g  the d e g r e e s  of f r e e d o m  when the s t a b i l i t y  l o s s  p r o c e s s  is  s t u d i e d  o v e r  a f in i te  t i m e  i n t e r v a l  0 _< 
t _< to. C o n s i d e r  the e x p r e s s i o n s  

q m *  - -  c h ~ * t ~ - - t  = ~ r a  2 c h c t * t o - - t  

q.~* = (fro / ~m ~) exp (am - -  a*) to (1,8) 

A s s u m e  tha t  we can  d iv ide  the f a c t o r s  in the e x p r e s s i o n s  (1.7) and  (1.8) fo r  qm* into c l a s s e s  a t  a 
s p e c i f i c  t i m e  i n s t a n t  to: 

ch a m t .  - -  i 

ch u'to -- 1 = O (q-i), m = ta (i), i = 0, t ,  2 . . . . .  io (1.9) 

e x p  (~.~ - -  a* )  to = 0 (~1-~), m = m (t), z - -  O, l ,  2 . . . . .  Zo (1.1 o) 

/m / a j ' -  = O (+1-% m = m (l), l = I, 2 . . . . .  (1,11) 

The f i r s t  two r e l a t i o n s  depend  on the t i m e  i n s t a n t  to and  on the d e n s i t y  of  the  c h a r a c t e r i s t i c  m o t i o n s  
in  the s t a b i l i t y  p r o b l e m  fo r  a c o m p r e s s e d  r o d , w h i l e  the l a s t  r e l a t i o n  i s  i n d e p e n d e n t  of the t ime  [if s o m e  of 
the  F o u r i e r  c o e f f i c i e n t s  a r e  z e r o ,  then  fo r  t h e m  l = o~ in Eqs .  (1.11)]. When to - -  ~ ,  in the  f i r s t  c l a s s  i = 0 
in Eq.  (1.9) o r  (1.10) t h e r e  i s  e i t h e r  one mo t ion ,  fo r  which  m = m . ,  o r  two m o t i o n s ,  f o r  which  m = m . ,  
m ,  + 1. Us ing  Eqs .  (1.9) and  (1.11) o r  Eqs .  (1.10) and  (1.11), i t  i s  e a s y  to i den t i fy  the  f u n d a m e n t a l  m o t i o n s  
a m o n g  the q m * "  A c t u a l l y ,  fo r  q m *  a c o m p a r i s o n  wi th  r e s p e c t  to o r d e r  ho lds  a t  a f ixed  t i m e  in s t an t :  

q . , *  (to) = o ( q - , ) ,  rn = m ( ] ) ,  ] = ]o, ]o + t . . . .  ( 1 . 1 2 )  

H e r e  j i s  an  i n t e g r a l  p a r a m e t e r .  F r o m  the r e l a t i o n s  (1.12) we m a y  d e t e r m i n e  the n u m b e r  of funda-  
m e n t a l  mo t ions  m = re(j0) ( m i n j  = J0)" Among  the f u n d a m e n t a l  mo t ions  the de f in ing  m o t i o n  with index  m ,  
i s  n e c e s s a r i l y  p r e s e n t  fo r  s u f f i c i e n t l y  l a r g e  v a l u e s  of t o i f  f m , ~  0. 

Us ing  the e s t i m a t e s  (1.12), we d r o p  a l l  the s e c o n d a r y  t e r m s  of  the s e r i e s  (1.37, w h e r e u p o n  i t s  p r i n -  
c ipa l  p a r t  h a s  the f o r m  

m : E x  
w (x. t) = ~ q m  (t) s i n - z - ,  m = m (]o) (1.13) 

7n 

F o r  m o d e r a t e  t i m e s  to and e x t e r n a l  e f f e c t s  wi th  a s i ng l e  o r d e r  of  s m a l l n e s s ,  the funct ion w(x,  to) m a y  
be  of  a p u l s a t i n g  c h a r a c t e r  with r e s p e c t  to the  l o n g i t u d i n a l  c o o r d i n a t e .  
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Fig. 1 

We show that the separat ion into c lasses  in Eqs. (1.9) and (1.10), 
and, correspondingly,  also in Eqs. (1.12), depends on the rigidity char -  
ac te r i s t ics  of the rod; for example, for a three- layered rod with a sup-  
porting layer  of smal l  deflectional rigidity, the density of the charac -  
te r i s t ic  motions for cer ta in  values of the load intensity increases  sub-  
stantially in compar ison with the density of the charac te r i s t i c  motions 
for a homogeneous rod.  For intensive loading of three- layered s t ruc-  
tures  with a sufficiently pliable fi l ler,  higher forms of stability loss 
manifest  themselves more  readily than in homogeneous s t ruc tures  (see 
[2], pp. 806-809, mad also [3, 4]. 

The function ~p(m, to, ~) = exp (a m -  ~*) is a distinct in ter ior  
boundary layer  [5] if we take the pa ramete r  m as the independent var i -  
able and fix to and V. In Fig. 1 we show typical curves  character iz ing 

the distribution of amplitudes of stabili ty loss forms relative to the determining motion at a fixed time in- 
stant when f m / ~ m  2 = const  ~ 0 for m<~.  Curve 1 is drawn for t = t 0, curve 2 for t = 2to, curve 3 for t = 10to 
(n 2 = 50), curve 4 for t = to, curve 5 for t = 2to, and curve 6 for t = 10t0 (V2 = 128). Under more intense load- 
ing, the boundary layer  described by the function r  to, ~) may be expressed more c lear ly .  As t - ~  the 
function r  to, ~) has the form r  0o, V) = 1 for m = m . ,  r  ~, V) = 0 for m s  m . ,  i .e. ,  as if it were 
completely "cut out" of a single motion [1, 5], if f m .  ~ 0. 

In solving specific problems a separat ion into c lasses ,  s imi lar  to that in Eq. (1.9) or  Eqs. (1.10) and 
(1.11), cannot always bemade', since the boundaries of the c lasses  may be "smeared out," but even in such 
cases  identifying the fundamental motions presents  no difficulties if use is made of a compar ison with re -  
spect  to o rde r  (asymptotic analysis) .  

Thus a rod under constant  intensive loading may always be replaced by a sys tem with a single degree 
of f reedom of index m = m .  [see Eq. (1.13)] if the time interval is sufficiently large (0 _ t _< to), and if the 
Four ier  ser ies  coefficient of index m .  is nonzero,  i .e. ,  i f f m  , ~ 0. In exceptional cases  the rod may be 
replaced by a sys tem with two degrees of freedom, with indices m = m .  and m .  + 1, if t o is large and 

f m . ~  0, f m * + l  r 0. 

The problem considered above, relating to the buckling process  in a rod, is probably the s imples t  
problem of its kind. We give below two examples which show that among the problems relating to the inten- 
sive loading of thin-walled elast ic s t ruc tures  much more complicated situations may ar ise ;  in these exam- 
ples the density of the charac te r i s t i c  motions depends essent ial ly  on the thin-walled proper ty  of the s t ruc -  
ture; moreover ,  in the second of these examples,  the density of the charac te r i s t i c  motions is connected 
with the nonuniqueness of representa t ion of the solution. 

2. We now consider the development of axially symmet r i c  forms of stability loss of thin-walled cylin- 
dr ical  shells under a constant intensive loading [2, 6] 

e ~w . . . . .  -]- w+~,W, xx~- w,~t = f ( x )  ( O ~ x ~ L / R ,  t ~ O )  (2.1) 

Here w is the normal deflection of the shell of length L and radius R; h is the shell thickness; x and 
t a re ,  respect ively ,  the longitudinal coordinate and the time; e 2 = h2/12 ( 1 - u  2) R 2 is a pa ramete r  which 
charac te r izes  the thin-walled proper ty  of the s t ructure;  u is Poisson ' s  ratio; h is a loading intensity param-  
eter ;  and f(x} is a function proportional to the given perturbations or  imperfect ions of the shell (the scale 
of the independent variable t is chosen so that the coefficient of w,t t becomes unity). 

Up to the instant  of application of  the intensive load, let the hinge-supported shell be at r e s t  [see Eqs.  
(1.2), where x = 0, L/R].  If a solution of the problem (2.1), (1.2) is sought in the form of a se r ies  [see Eq. 
(1.3), where the independent variable is replaced by Rx], then for the qm we obtain Eqs. (1.4), where the 
coefficients are  of the form 

L/R 
,nnR 2R I am 2 = ~.ml 2 -- g"mi a -- t, mx = ---Z-- ' 1~ = --Z-. f (x) sin dx 

0 

(2.2) 

Next we study the motions describing loss  of stability, the amplitudes of these motions being given by 
Eqs. (1.5) and (1.6) for m0 < m < moo; the indices m < m 0, m > moo correspond to oscil lat ions;  the time 
functions qm ~ (t) and qm00 (t) may be second degree polynomials.  The coefficient a m has a maximum for 
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m l .  2 = ( , n . n R  / L) 2 = ~ / 282, max a~ 2 = ~2 / 4e2 _ 1 (2.3) 

We s tudy  the dens i ty  of  the c h a r a c t e r i s t i c  mot ions .  This p r o b l e m  is ana logous  to the p r o b l e m  con-  
ce rn ing  the n u m b e r  of c h a r a c t e r i s t i c  va lues  which fall  in a given in te rva l  of va r i a t ion  of the c h a r a c t e r i s t i c  
va lues  [7], the only d i f f e rence  be ing  that  in ou r  p rob l em it  is  n e c e s s a r y  to count  the n u m b e r  of c h a r a c t e r i s -  
t ic  mot ions  (number  of f o r m s  of  s tabi l i ty)  which fall  in a given i n t e rva l  of  va r i a t ion  of  a m [see Eqs .  (1.7) 
and (1.9)]. F r o m  the e x p r e s s i o n  for  o~ 2 we have [see Eqs .  (2.2)] 

m 1 = {)~12e 2 ___ [~) - -  482 (t @ am2)]'/~12e"~} ','~ (2.4) 

We es t ab l i sh  the p r e s e n c e  o r  a b se nc e  of  points (regions) of  condensa t ion  for  the function ms = ms(a2m ) 
by examin ing  the de r iva t ive  0 m l / 0 a  2 

OmjOa,  2 N [)2 _ @2 (l -t- am2)] - ' '  (2.5) 

We have omi t t ed  f a c t o r s  on the r i gh t  s ide of the r e l a t ion  (2.5) which conta in  no s ingu la r i t i e s .  F r o m  
2 r e l a t ion  (2.5) i t  follows that  am~/aa2m ~ ~ fo r  X 2 ~ 4 ~  2 (1 + am) ;  in p a r t i c u l a r ,  when k2 = 4s2 (1 + a2m ), the 

coef f i c i en t  in the exponent  a t ta ins  a m a x i m u m  value [see Eqs .  (2.3)]. Thus in a ne ighborhood  of m = m .  we 
can find a r eg ion  of condensa t ion  of  c h a r a c t e r i s t i c  mot ions .  This r eg ion  of  condensa t ion  of  c h a r a c t e r i s t i c  
mot ions  in f luences  the se l ec t ion  of  the d e g r e e s  of f r e e d o m  when the s tab i l i ty  l o s s  p r o c e s s  is s tudied o v e r  a 
finite t ime  in t e rva l  0 _< t _< t o. Actua l ly ,  the s epa ra t i on  into the c l a s s e s  (1.9) and (1 30)  depends  on the den-  
s i ty  of the c h a r a c t e r i s t i c  m o t i o n s ,  the l a t t e r  being d e t e r m i n e d  by the thin-wal led p r o p e r t y  of  the s t r u c t u r e .  
The funct ion ~(m,  to, ~, e) = exp (o~ m -  a * )  to is a d i s t inc t ive  i n t e r i o r  boundary  l a y e r  [5] (m is the indepen-  
dent  va r i ab le ;  t 0, V, and e a r e  fixed).  

The e x p r e s s i o n  

m a r  w (x, t) = ~ qm (t) sin ~ x, m = rn (]0, e) (2.6) 
m 

is  the p r inc ipa l  p a r t  of  the s e r i e s  (1.3), where in  the n u m b e r  of t e r m s  in the s u m  (2.6) depends on the th in-  
wal led  p r o p e r t y  of  the s t r u c t u r e .  In so lv ing  spec i f i c  p r o b l e m s  for  a g iven thin-wal led shel l ,  the ca lcu la t ion  
of  the dens i ty  of the c h a r a c t e r i s t i c  mot ions  in a given p r o b l e m  p r e s e n t s  no d i f f icu l t ies .  

3. We c o n s i d e r  the b e h a v i o r  of a s p h e r i c a l  panel loaded by  an in tens ive ,  ex t e rna l ,  un i fo rmly  dis-  
t r ibu ted  p r e s s u r e .  Le t  the fas ten ing  of the r e c t a n g u l a r  s p h e r i c a l  panel admi t  a m o m e n t l e s s  s tate  of s t r e s s  
and, at the ins t an t  of  appl ica t ion  of  the l a r g e  in tens i ty  load,  le t  the panel be p r e s s e d  wi thout  i ne r t i a .  Then 
the equat ion d e s c r i b i n g  the deve lopmen t  of  the n o r m a l  def lec t ions  has the f o r m  [2, 6] 

e2AAw + w@ ~Aw + w, tt = ](x, y) (O ~ x ~ a / R ,  O ~.~ y ~ b /R ,  t > 0 )  (3.1) 

Here  x and y a r e  spa t i a l  c oo rd i na t e s ,  R is the rad ius  of  the s p h e r i c a l  shel l ,  and the r ema in ing  nota-  
t ion is the same  as tha t  used  in Sec.  1 (Aw = W,xx+ W,yy)~ 

We a s s u m e  that  p r i o r  to loading the h inge - suppor ted  shel l  is in a s ta te  of  r e s t :  

w = w , t = 0 ,  (t = 0 ) ,  w = w , ~ = 0  

(x = O, a / R ) ,  w = W, yy = 0 (y = O, b/R) (3.2) 

We seek  a solut ion of  the Eqs .  (3 3 )  and (3.2) in the f o r m  

w (x, y, t) = q (t) W(x, y) (3.3) 

whe re  the funct ion W(x, y) sa t i s f i e s  the equa t ion  (see [6], Chap. 10, w 15 and a l so  [2], w 212) 

AW = --~t~W (3.4) 

We obtain an equat ion  fo r  q(t), iden t ica l  in f o r m  with Eqs .  (2.4), which have a l r e a d y  been s tudied.  
Fo r  fixed/~ the Eq. (3.4) has  the nonunique solut ion 
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ei ther  for in tegers  n and m or for n and m differing little f rom integral  values. In the f i rs t  case the coeffi- 
cients in the exponents of the corresponding motions coincide, while in the second case they differ little 
f rom each other.  Thus the density of the charac te r i s t i c  motions in the spherical  panel buckling problem 
depends on the thin-walled proper ty  of the s t ructure  and is connected with the nonuniqueness of the solution 
of Eq. (3.5). 

For  intensive loading of shells [2] the higher stabili ty loss forms have the g rea tes t  amplitude growth 
rate;  this was stated formally in [4]; however,  it was not proved that, in all, a single form corresponds  to 
the exponent with the maximum index. The example we have given shows that nonuniqueaess may exist.  
Consequently, we cannot always succeed in approximating the initial sys t em by one with a single degree of 
f reedom. It is therefore desirable to conduct a supplementary study of the density of the charac te r i s t i c  
motions in problems involving intense loading of a rb i t r a ry  homogeneous and layered shells.  Analogous 
problems concerning the density of the charac te r i s t i c  values in problems of dynamics [8] and stability [9] 
of homogeneous shells were studied ea r l i e r .  Under intensive dynamic loading of shells the corresponding 
equations also include iner t ia  t e rms  and t e rms  connected with stability. 

Thus the principal par t  of the solution of the problem (3.1), (3.2), if an analysis s imi la r  to that of 
Sec. 1 is ca r r i ed  out, may be represented  in the form 

w = ~, q,,m (t) sin naRXa sin m~_Ry, m = m (]0, e), n = n (]0, e) (3.6) 

where the number  of degrees  of f reedom is sufficiently large.  In studying the behavior  of layered s t ruc-  
tures  with t r ansve r se  shear  taken into account, this number of degrees  of f reedom increases  sharply.  

4. In the work above we have identified the fundamental degrees  of f reedom in sys tems  with dis- 
tributed pa ramete r s  [see Eqs. (1.13), (2.6), and (3~176 If for a rod the number of degrees  of f reedom is 
e i ther  smal l  or  equal to one, for shells it is fair ly large.  In the experiments  on spherical  shells repor ted 
in [10, 11], "it was established that the number of bulges in the shells increased  with an increase  in rate of 
loading, i .e. ,  much higher forms of stability loss were d iscovered"  ([10], p. 132) and "at much higher ra tes  
of loading there was observed a tendency towards the formation of severa l  se r i e s  of waves,  positioned in a 
checkered fashion concentr ical ly  relative to a pole" ([11], p. 39). However,  in these exper iments  a suffi- 
ciently stable picture of the bulge formation was not observed.  Some "instability," along with a g rea te r  
sensi t ivi ty to the experimental  conditions, is connected with the fact that the set  of stability loss forms have 
a tendency towards rapid growth. Normal deflection "pulsations" are possible:  "a loss  of stability always 
preceded a considerable or  rapidly decaying oscil lation of the whole shell or  some portion of it (a 'splash ' ) ,"  
usually "a bulge appeared initially at the contour; with repeated loading this bulge developed fur ther  and a 
second bulge appeared" ([10], pp. 126,127).  

We use the relations (1.13), (2.6), and (3.6) to obtain es t imates  of the cr i t ical  buckling time t .  and the 
cr i t ica l  loading intensity 7 . -  We f i rs t  note the features of the aforementioned relat ionships:  each t e rm of 
the ser ies  consists  of factors ;  in the f i rs t  of which, for t values sufficiently large,  the main contribution 
comes f rom the exponent,while the second factor  does not exceed one in absolute value. Therefore if we 
assume that the initial perturbat ions,  corresponding to the various forms of the normal  motions,  are  of a 
single o rde r  of smal lness  [1] [i.e., the relat ions (1.11) fall into a single c lass] ,  the following est imate holds 
for the normal  deflection of a shell or  a rod: 

max I w [ ~ KC exp a*t (a* = max ct) (4.1) 

Here K is the number of degrees  of freedom, and C is a constant depending on the conditions of the 
problem. The est imate (4.1) holds only for sufficiently large values of t since it contains no t e rms  with 
exp ( - - a ' t )  and no te rms  depending ei ther  on x or  on t. 

The cr i t ical  buckling time t .  and the cr i t ical  loading intensity ~?, may be obtained f rom the relat ion -~ 
ships 

max I w (~l, t,) I ---- w., max I w (q,, to) I = w. (4.2) 

if we choose the maximum deflection as the determining quantity. 
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In Eqs.  (4.2) we substi tute the e s t ima te  (4.1) for  the deflection w; we have 

a *  (~l) t ~--~ In w ,  - -  In  C - -  i n  K (4.3) 

whence the p rocedure  for  obtaining the c r i t i ca l  p a r a m e t e r s  t .  and 7 ,  becomes  obvious.  Equation (4.3) is 
fa i r ly  s table  with r e s p e c t  to poss ible  e r r o r s  (perturbations) in the de terminat ion  of the constants  w . ,  C, 
and K. The t e r m  (-In K), as a rule ,  has s ignif icance in p rob lems  involving the buckling of wel l -def ined 
thin-walled she l l s ,  s ince si tuat ions a r e  possible  for  which K >> 1 [see the examples  given in Sec. 2 and 3; 
in rod-buckling p rob lems  this t e r m  can, as  a rule ,  be neglected since K = O(1)]. 
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